~

N90-20553

PRECEDENCE RELATIONSHIP REPRESENTATIONS OF
MECHANICAL ASSEMBLY SEQUENCES

L. S. Homem de Mello A. C. Sanderson
The Robotics Institute Electrical, Computer, and Systems Engineering Dept.
Camegie Mellon University Rensselaer Polytechnic Institute
Pittsburgh, Pennsylvania 15213-3890 Troy, New York 12180-3590
Abstract

This paper presents two types of precedence relationship representations for mechanical assembly sequences:
precedence relationships between the establishment of one connection between two parts and the establishment of
another connection, and precedence relationships between the establishment of one connection and states of the
assembly process. Precedence relationship representations have the advantage of being very compact. The problem
with these representations was how to guarantee their correctness and completeness. Two theorems are presented
each of which leads to the generation of one type of precedence relationship representation guaranteeing its correct-
ness and completeness for a class of assemblies.

1. Introduction

The generation of assembly sequences is an important capability for both autonomous and telerobotic systems for
space applications. Assembly, repair, servicing, and sample acquisition are examples of tasks that are envisioned for
space robotic systems. In each case, a plan or sequence of operations must be generated, usually off-line, based on
prior knowledge. In real-time, it may be necessary to modify the plan based on monitoring and sensing of the
execution. The desirable representation of the alternative plans for an off-line planning system may be quite
different from the desirable representation for the real-time control system. The understanding of alternative
representations of such plans is fundamental to their integration into a useful system.

Several methodologies for representing assembly sequences have been utilized. These include representations
based on directed graphs [3], on AND/OR graphs [8], on establishment conditions [2], and on precedence
relationships [3, 6]. Those based on directed graphs and on AND/OR graphs are explicit representations since there is
a mapping from the assembly tasks into the elements of the representations. Those based on establishment con-
ditions and on precedence relationships are implicit representations because they consist of conditions that must be
satisfied by the assembly sequences.

In previous work [9) we have described a correct and complete algorithm for the generation of mechanical
assembly sequences. This algorithm yields the AND/OR graph representation of assembly sequences. The correspon-
dence between the AND/OR graph and the directed graph representations has also been established [10].

In this paper we address the precedence relationship representations of assembly sequences. These represen-
tations have the advantage that they are very compact and therefore might be preferred in real-time planning of
assembly sequences. The problem with precedence relationship representations was the assessment of their correct-
ness and completeness. By correctness of the representation we mean that only feasible sequences satisfy the
precedence relationships. By completeness we mean that all the feasible sequences satisfy the precedence relation-
ships.

Two types of precedence relationship representations can be used to represent mechanical assembly sequences:
precedence relationships between the establishment of one connection between two parts and the establishment of
another connection, and precedence relationships between the establishment of one connection and states of the
assembly process. This paper describes these two representations and shows two theorems that can be used to
guarantee their correctness and completeness for a class of assemblies.

2. Background

A mechanical assembly is a composition of parts interconnected forming a stable unit. Each part is a solid object.
Parts are interconnected whenever they have one or more surfaces in contact. Surface contacts between parts reduce
the degrees of freedom for relative motion. A cylindrical contact, for example, prevents any relative motion that is

o 353
oAU FILMED

not a transiation along the axis or a rotation around the axis. Attachments may act on surface contacts and eliminate
all degrees of freedom for relative motion. For example, if a cylindrical contact has a pressure-fit attachment, then
no relative motion between the parts is possible.

A subassembly is a nonempty subset of parts that either has only one element (i.e. only one part), or is such that
every part has at least one surface contact with another part in the subset. Although there are cases in which it is
possible to join the same pair of parts in more than one way, a unique assembly geometry will be assumed for each
pair of parts. This geometry corresponds to their relative location in the whole assembly. A subassembly is said to
be stable if its parts maintain their relative position and do not break contact spontaneously. All one-part sub-
assemblies are stable.

The assembly process consists of a succession of tasks, each of which consists of joining subassemblies to form a
larger subassembly. The process starts with all parts separated and ends with all parts properly joined to form the
whole assembly. For the current analysis, it is assumed that exactly two subassemblies are joined at each assembly
task, and that after parts have been put together, they remain together until the end of the assembly process.

It is also assumed that whenever two parts are joined all contacts between them are established. Due to this
assumption, an assembly can be represented by a simple undirected graph (P,C) in which P={p,, Py PN is
the set of nodes, and C={c,,c,, - - ,¢; } is the set of edges. Each node in P corresponds to a part in the assembly,
and there is one edge in C connecting every pair of nodes whose corresponding parts have at least one surface
contact. The elements of C are referred to as connections, and the graph (P,C) is referred to as the assembly’s
graph of connections. A connection encompasses all contacts between two parts. Figure 1 shows an assembly in
exploded view, and figure 2 shows its corresponding graph of connections.

¢ Assembly states

The state of the assembly process is the configuration of the parts at the beginning (or at the end) of an assembly
task. The configuration of parts is given by the contacts that have been established. Since whenever two parts are
joined all contacts between them are established, the configuration of parts is given by the connections that have
been established. Therefore, a state of the assembly process can be represented by an L-dimensional binary vector
x=[x;,x,, -+ ,x;] in which the i component x; is true or false respectively if the i connection is established in
that state or not.

As mentioned above, it is assumed that whenever a subassembly is formed all connections between its parts are
established. Therefore, any subassembly can be characterized by its set of parts. In the rest of this paper, references
to subsets of parts should be understood as references to the subassemblies made up of those parts. It will always be
clear from context what the whole assembly is. Because of this assumption, any state of the assembly process can
also be represented by a partition of the set of parts of the whole assembly.

Given an assembly’s graph of connections and one of the two representations of assembly states described above
(binary vector or partition), it is straight forward to obtain the other representation.

There are partitions of the set of parts of the whole assembly that cannot characterize a state of the assembly
process. For example, the partition { {CAP, HANDLE}, {RECEPTACLE}, {STICK} } cannot characterize a state of the
assembly process for the assembly shown in figure 1 because the subset {CAP, HANDLE] does not characterize a
subassembly. Partitions that can characterize a state of the assembly process will be referred to as state partitions,
and partitions that cannot characterize a state will be referred to as nonstate partitions.

Similarly, not all L-dimensional binary vectors can characterize a state. For example, for the assembly shown in
figure 1 the S-dimensional binary vector [true, true, false, false, false] does not correspond to a state because if
connections ¢, and c, are established then connection ¢, should also be established. L-dimensional binary vectors
that can characterize a state will be referred to as state vectors whereas L-dimensional binary vectors that cannot
characterize a state will be referred to as nonstate vectors.

Any state of the assembly process can be associated to a simple undirected graph (P, C,) in which P is the set of
nodes of the assembly’s graph of connections, and C, is the subset of connections (C, < C) that is established in that
state. This graph is referred to as the state’s graph of connections. Except for the final state of the assembly
process, a state’s graph of connections has more than one component.

We will use the subassembly predicate sa to determine whether a subset of parts makes up a subassembly. The
argument to this predicate is a subset of pants, and its value is either true or false depending on whether that subset of
parts corresponds to a subassembly. For example, for the assembly shown in figure 1, sa({ RECEPTACLE,
HANDLE })=true, whereas sa({ CAP, HANDLE }) =false. From the assembly’s graph of connections it is straight
forward to compute sa for any given subset of parts.

354

cl
CAP STICK
¢, € €,
Cs
RECEPT HANDLE
CAP STICK RECEPTACLE HANDLE
Figure 1: A simple product in exploded view. Figure 2: The graph of connections for the

product shown in Figure 1

In this paper, a partition of the set of parts whose elements all satisfy the subassembly predicate is an assembly
state representation, regardless of whether that state actually occurs in any of the different ways the assembly can be
assembled. The corresponding L-dimensional binary vector is also an assembly state representation. And the
corresponding configuration of parts is an assembly state. For example, for the assembly shown in figure 1, the
partition { {CAP, RECEPTACLE, HANDLE}, {STICK} } as well as the corresponding L-dimensional binary vector
[false, true, false, false, true) are assembly state representations. Yet, since it was assumed that once parts are put
together they remain together, the configuration of parts (i.e. the state) corresponding to these representations cannot
occur in any assembly process. Once the cap and the handle have been joined to the receptacle, it is no longer
possible to join the stick.

In this paper, an assembly state representation for which all subassemblies satisfy the stability predicate is said to
be a stable assembly state representation. For example, for the assembly shown in figure 1, the partition { {CAP,
RECEPTACLE, HANDLE}, {STICK}] as well as the corresponding binary vector [false, true, false, false, true] are
stable assembly state representations.

e Assembly tasks

Given two subassemblies characterized by their sets of parts 6; and ej, we say that joining 8, and ej is an assembly
task if the set ©,=86;U0. characterizes a subassembly. For example, for the assembly shown in figure 1, if
6,={ RECEPTACLE } and 9}-={ HANDLE } then joining 6; and 6, is an assembly task, whereas if 8;={ CAP} and
ej= { HANDLE } then joining ©; and 6. is not an assembly task. The subassemblies 8, and 6, are the inpur sub-
assemblies of the assembly task, and ék is the output subassembly of the assembly task. Due to the assumption of
unique geometry, an assembly task can be characterized by its input subassemblies only and it can be represented by
a set of two subsets of parts. For example, for the assembly shown in figure 1, the joining of the cap to the
receptacle is represented by { {CAP}, {RECEPTACLE} }.

An assembly task is said to be geometrically feasible if there is a collision-free path to bring the two sub-
assemblies into contact from a situation in which they are far apart. And an assembly task is said to be mechanically
feasible if it is feasible to establish the attachments that act on the contacts between the two subassemblies.

¢ Assembly sequences

Given an assembly that has N parts, an ordered set of N1 assembly tasks 1,,7,, - -- ,Ty_; i an assembly
sequence if there are no two tasks that have a common input subassembly, the output subassembly of the last task is
the whole assembly, and the input subassemblies to any task 7, is either a one-part subassembly or the output
subassembly of a task that precedes 7, To any assembly sequence 7,,1,, - - - ,Ty_, there corresponds an ordered
sequence s, ,5,, - - - ,Sy of N assembly states of the assembly process. The state s, is the state in which all parts are
separated. The state sy, is the state in which all parts are joined forming the whole assembly. And any two
consecutive states s; and s;, ; are such that only the two input subassemblies of task 1, are in s; and not in s;,,, and
only the output subassembly of task 7; is in 5;,; and not in 5, Therefore, an assembly sequence can also be
characterized by an ordered sequence of states.

i+1

355

An example of an assembly sequence for the assembly shown in figure 1 is:
1. The first task (1,) consists of joining the cap to the receptacle.
2. The second task (t,) consists of joining the stick to the subassembly made up of the cap and the
receptacle.
3. The third task (t,) consists of joining the handle to the subassembly made up of the cap, the stick, and
the receptacle.

An assembly sequence is said to be feasible if all its assembly tasks are geometrically and mechanically feasible,
and the input subassemblies of all tasks are stable. The assembly sequence described above is feasible. An example
of an unfeasible assembly sequence for the assembly shown in figure 1 is:

1. The first task (1,) consists of joining the cap to the receptacle.
2. The second task (1,) consists of joining the handle to the subassembly made up of the cap and the
receptacle.
3. The third task (;) consists of joining the stick to the subassembly made up of the cap, the stick, and
the receptacle.
This assembly sequence is unfeasible because the third task (t;) is not geometrically feasible since there is no
collision free path to bring the stick into the receptacle, once both the cap and the handle have been joined to the
receptacle.

An assembly sequence (not necessarily feasible) can be represented in different ways. We will use the following

representations:
e An ordered list of task representations. The number of elements in this list is equal to the number of
parts minus one.
» An ordered list of binary vectors. Each vector must correspond to a state (not necessarily stable). The
number of elements in this list is the equal to the number of parts.
¢ An ordered list of partitions of the set of pans. Each partition must correspond to a state (not neces-
sarily stable). The number of elements in this list is equal to the number of parts.
o An ordered list of subsets of connections. The number of elements in this list is equal to the number of
parts minus one.
Given the assembly’s graph of connections and an assembly sequence in any of these four representations, it is
straight forward to obtain the other three representations.

Since each assembly sequence can be represented by ordered lists, it is possible to represent the set of all
assembly sequences by a set of lists, each corresponding to a different assembly sequence. It is also possible to use
directed graphs, and AND/OR graphs to represent the set of all assembly sequences. Figure 3 shows the direct graph
of feasible assembly sequences for the assembly shown in figure 1. The AND/OR graph of assembly sequences for
the assembly shown in figure 1 has been presented elsewhere [8]. Alternatively, the set of all feasible assembly
sequences can be represented by sets of precedence relationships. Sections 3 and 4 below present two types of
precedence relationship representations of feasible assembly sequences.

3. Precedence relationships between the establishment of one connection and the
establishment of another connection

We will use the notation c; < ¢; to indicate the fact that the establishment of connection c; must precede the
establishment of connection ¢;. And we will use the notation ¢; < ¢; to indicate the fact that the establishment of
connection ¢; must precede or be simultaneous with the establishment of connection c;. Furthermore, we will use a
compact notation for logical combinations of precedence relationships; for example, we will write! ¢, < ¢; ¢, When
we mean (¢; < ¢;)A(¢; < ¢), and we will write ¢;+c; < ¢, when we mean (c; <) v (€<)

An assembly sequence whose representation as an ordered sequence of binary vectors is (x1,X5,- ", X N) and
whose representation as an ordered sequence of subsets of connmections is (Y;.Y3. " *,Y n-—y) satisfies the
precedence relationship ¢; < ¢; if c;€ Y, ;€ and a <b. Similarly, the sequence satisfies ¢; <¢; if ;€ 7,

The logical operation AND will be denoted either by the symbol "A" or by the product of the two logical variables. Similarly, the logical
operation OR will be denoted cither by the symbol " v or by the sum of the two logical variables.

356

[{C) 18} {R} {H) }

[!ucnnsuﬂﬂ [‘ucs)(mm))l &cusnum [‘ucns)mr«n] ucunusuﬂ

{(C R 8} (M)} {{C} {8 R H}}]

{(C A M) (8} {{C R) {8 M) [{C S H) (A)) ({C S} {RH)}

C=cap S=stick R=receptacle H =handle
Figure 3: Directed graph of feasible assembly sequences for the assembly shown in figure 1.

€ € Ypr and a < b. For example, for the assembly shown in figure 1, the assembly sequence whose representation as
an ordered sequence of binary vectors is

([false, false, false, false, false]
[true, false, false, false, false]
[true, true, true, false, false)
[true, true, true, true, true])

and whose representation as an ordered sequence of subsets of connections is ({cy) {eq c3) {cy, c5)) satisfies the
precedence relationships ¢, < ¢, and ¢, < ¢, but does not satisfy the precedence relationships c;<cyand ¢, <¢,.

Each feasible assembly sequence of a given assembly can be uniquely characterized by a logical expression
consisting of the conjunction of precedence relationships between the establishment of one connection and the
establishment of another connection. For example, for the assembly shown in figure 1, the assembly sequence
described in the previous paragraph can be uniquely characterized by the following conjunction of precedence
relationships

(c; <) A(cy <cy) A (c3S¢c3) A(c3S¢y) A(cgScs) A(esScy)

The set of all M feasible assembly sequences can be uniquely characterized by a disjunction of M conjunctions of
precedence relationships in which each conjunction characterizes one assembly sequence. Clearly, this logical
combination of precedence relationships constitutes a correct and complete representation for the set of all assembly
sequences.

It is often possible to simplify this logical combination of precedence relationships using the rules of boolean
algebra. Further simplification is possibie if one notices that there are logical combinations of precedence relation-
ships that cannot be satisfied by any assembly sequence. For the assembly shown in figure 1, for example, the
combination (¢, < c,) A (c; < ¢3) A (c3 <¢4) A (cq < cg) cannot be satisfied by any assembly sequence. These
combinations can be set as don’t care conditions in the simplification of the logical combination of precedence
relationships.

Whenever the assembly has the two properties described below, it is possible to obtain a simple precedence
relationship representation of all assembly sequences. This representation is obtained using the result of theorem 1.

ORIGINAL PAGE IS
357 OF POOR QUALITY

The first property is:

Property 1: Given any two states s; and s;, not necessarily in the same assembly sequence, let ; and Y
be the sets of connections that are estabhshed in assembly tasks 1; and T from s; and 5 respectively. If
(P,C;) is the state’s graph of connections associated to s;,
(P ,Cj) is the state’s graph of connections associated to 55
) Yf’
C;cC;, and
T is geometrically and mechanically feasible,

then
7; is geometrically and mechanically feasible.

This property corresponds to the fact that if it is geometrically and mechanically feasible to establish a set of
connections ('yj) when many other connections (Cj) have already been established, then it is also geometrically and

mechanically feasible to establish fewer connections (y; ¢ 'yj) when fewer other connections (C; ¢ C) have been
established. Although many common assemblies have this property, there are assemblies that don’t have it.

The second property is:

Property 2: If the subsets 6,,6,, - -- ,6, of the set of parts P characterize stable subassemblies, then
the set 6=6, U6, - -- UB, also characterizes a stable subassembly.

Like in the case of property 1, many common assemblies have this second property. Yet, there are assemblies
that don’t have it.

Theorem 1: Given an assembly made up of N parts whose graph of connections is {P,C) (with
C={cy.cp, -+ s D let
E Y2 Yaent)s (a2 Yaz o Yeen2)s s (Yam Yam - Yovenm))
be a set of M ordered sequences of subsets of connections that represent feasible assembly sequences. If
the assembly has properties 1 and 2, then any ordered sequence of N-1 subsets of connections that

represents an assembly sequence corresponds to a feasible assembly sequence if it satisfies the set of 2L
precedence relationships:

M M
YT i=1,2,--L and > H;s¢ =12,
4 ~
where
= f d !
T, = A, with A, {Ck1 €, € Y;jand [2
Y lk:‘,[ik i tmeotherwxse

L

= i ;] c, if ¢, € Yy I1<i
iy H M v A= { t:'ue otherwxlse

The sum and the product in this theorem are the logical operations OR and AND respectively. Each term T (for
i=1,2, ,L, and for j=1,2, M) is the product of the variables corxespondmg to the connections that are
estabhshed at the same time of'after the establishment of connection c; in the j% sequence. Similarly, each term H
(fori=1,2, ,L, and forj=1,2, ,M) is the product of the vanables corresponding to the connections that
are estabhshed befoxe the estabhshment of connection ¢; in the / sequence. Precedence relationships that have
"true” on either side are always satisfied. The proof of thls theorem is presented elsewhere [7].

An example will illustrate the use of theorem 1. The assembly shown in figure 1 has properties 1 and 2. For that
assembly, the set of feasible assembly sequences can be obtained from the directed graph shown in figure 3. There
are ten feasible assembly sequences and they are:

358

Cl}{czvc3}[c4v55}) ({CI}{CS]{Cz,C3,C4)) ({Czl{clvcy,}{cucs})
e} {egd Lepaegies) (Hegd lepaeg) egnes)) (Heg) {eqie5) {eey D)
C‘4}{62}{C1,C3,C5}) ({04}{03»55}{5"1’5'2}) ([05}{51}{02sc3oc4])
C5} {5'3,5'4} {Cl,Cz})

(
(
(
(

Applying the result of theorem 1 to the above set of feasible sequences for the assembly shown in figure 1, the
precedence relationships having connection ¢, alone on one side are:

Cl < C2'C3'C4'CS+ C2'C3'C4'C5+ C3‘C4~C5+ C3'C5+ C2'C4'6‘5+ C2+ C3'C5+ C2+ C2'C3'C4+ Cy

and
tme+tme+c2'ca+C2'C3'C4'C5+ C2‘C3+ C2'C3'C4‘C5+C2'C3'C4'C5+
€y CqCyq Cs+ C5+ €y Cqt Cy Cs¥ < ;-

Using the rules of boolean algebra, these two precedence relationships can be simplified yielding
€] S+ 0y Cs and true < ¢;.

The second precedence relationship is always satisfied and can be ignored. Similarly, applying the result of theorem
1, simplifying the logical expressions, and deleting those precedence relationships that have "true" on either side, we
obtain four additional precedence relationships. The resulting set of precedence relationships is:

€1 SCp+0yCs CaSC+C3:Cy C3SC 1 CsHCy €y €4S C5tCy 03 €Syt Cy. (Ser 1)
Set 1 of precedence relationships still contains some redundancies and can be shown to be equivalent to
C3SCpCg+CyeCy. (Set 2)

It should be noticed that an unfeasible assembly sequence, such as the assembly sequence whose representation as
an ordered sequence of subsets of connections is ({c,} {cs} {¢;,c3,c4])), does not satisfy Set 2 of precedence
relationships. It should also be noticed that there are ordered sequences of subsets of connections, such as
({c3} {cp.cq) {c3,c41), that do not represent an assembly sequence, but satisfy Set 2 of precedence relationships.
The precedence relationships obtained using theorem 1 can only discriminate the feasible from the unfeasibie
assembly sequences. The information in the assembly’s graph of connections allows the discrimination of assembly
sequences from ordered sequences of subsets of connections that do not correspond to assembly sequences.

Theorem 1 is a sufficient condition. The set of precedence relationships obtained using this theorem is correct but
not necessarily complete. But if the set of M ordered sequences of subsets of connections includes the represen-
tations of all feasible assembly sequences, then the resulting set of precedence relationships constitutes a correct and
complete representation of the feasible assembly sequences.

4. Precedence relationships between the establishment of one connection and states of the
assembly process

We will use the notation ¢; = §(x) to indicate that the establishment of the i connection must precede any state
s of the assembly process for which the value of the logical function S(x) is true. The argument of S(x) is the
L-dimensional binary vector representation of the state s. We will use a compact notation for logical combinations
of precedence relationships. For example, we will write ¢;+c;— §(x) when we mean
[c; > S v [¢;— S(x0)].

An assembly sequence whose representation as an ordered sequence of binary vectors is (x; x, --- x) and
whose representation as an ondered sequence of subsets of connections is (Y, Y, - - - Yy.;) satisfies the precedence
relationship ¢; = S(x)if

S(x))=>3I[(U<k)r(c;e y)] fork=1,2,--- ,N.

For example, for the assembly shown in figure 1, the assembly sequence whose representation as an ordered
sequence of binary vectors is

359

{ [false, false, false, false, false]
[true, false, false, false, false]
[true, true, true, false, false]
[true, true, true, true, true])

and whose representation as an ordered sequence of subsets of connections is ({c;} {c,, ¢35} {c;, ¢}) satisfies the
precedence relationship c¢; — x,-x; because the only states for which S(x)=x,-x, is true are the third and the
fourth, and the establishment of connection ¢, occurs on the first assembly task. This sequence does not satisfy the
precedence relationship ¢, — x,-x,-x; because for the third state the value of §(x)=x, x,-x; is true but the
establishment of connection ¢, occurs on the third assembly task, which occurs after the third state.

Let ¥ be the set of assembly states that never occur in any feasible assembly sequence. These include the
unstable assembly states, the stable states from which the final state cannot be reached, and the states that cannot be
reached from the initial state. Let Wy={x,,x,, --,x;} be the set of L-dimensional binary vectors that represent
the states in 5. Every element x ; of ¥y is such that the value of the logical function G (x ;) is true, where

K L
G(x)=G(x,xy, - wx) = 3 [M (Eq. 1)
k=1 =]
The sum and the product in equation 1 are the logical operations OR and AND respectively, and A, is either the

symbol x, if the /'™ component of x , is true, or the symbol %, if the /' component of x , is false. In many cases the
expression of G (x) can be simplified using the rules of boolean algebra. Allowing for simplifications, but keeping
the logical function as a sum of products?, equation 1 can be rewritten as

J
G(x)=Y g(x) (Eq.2)
J=1
where each term g (x) is the product of a subset of {x,,x,,--,x;,%;,%,, - ,X; } that does not include both x;
and x; for any i. Each term gj(x) can be rewritten grouping all the nonnegated variables first and all the negated
vanableslast Le, gi(X) =x 2y e xy Xy X X

Any assembly sequence that includes a state that is in ‘¥¢ is unfeasible. Therefore, a necessary condition for the
feasibility of an assembly sequence whose repnesemation as an ordered list of binary vectors is (x, x2 crr XN IS

that G(x)-G(xz)- - =G(xy)=false. This is equivalent to & (x,) = false for i=1,2,--- N und for
Jj=1,2, ... J. If the assembly has property 1 (see section 3), this condmon is also sufficient. Furthermore, if
(x;x5---xy) is an ordered list of binary vectors that represents an assembly sequence, the cordition

(x 1) = & (xz) ==y (x5) = false corresponds to a precedence relationship. These facts are established by

g
t[j)e followmg theorem. (The proof of this theorem is presented elsewhere [7].)

Theorem 2: Given an assembly made up of N parts whose graph of connections is (P ,C) (with
C={cj.cq, -+ s let

J
G(x) =3 &(x)
=1

be a disjunctive normal form of the logical function that is true if and only if x is a binary-vector
representation of a state that does not occur in any feasible assembly sequence. Let Aj be the set
containing the indexes of the variables that are asserted in g:(x). Let N. be the set containing the indexes
of the variables that are negated in 8 :(x). If the assembly ‘ms property 1, and if (¥, Y, -+ - ¥ N_ 1) is an
ordered sequence of subsets of connecuons that represents an assembly sequence, then (Y, ¥, - - Yy_;)
satisfies the set of precedence relationships

2 = H X; for j=1,2, .. ,J
ke N i€ A
if and only if it corresponds to a feasible assembly sequence.

2This form of a logical function is commonly referred 10 as disjunctive normal form [4].

360

An example will illustrate the use of theorem 2. For the assembly shown in figure 1, which has property 1,
Wy ={[false,true, false, false , true], [true, false, false, true, false] } (these binary vectors correspond to nodes §
and 10 in the directed graph of assembly states shown in figure 3). Therefore,

G(_{)=G(xl9x2vx39x4yx5)=i1'-X2‘x3‘i4'x5+xl'22'23'4‘4'25
In this case the expression of G (x) cannot be further simplified and we have

81(X)=X %y X3- X4 x5 A;={2,5} N;={1,3,4}

8(X)=x1 Xy X3-x4X5 Ay={1,4} N,={2,3,5}).

Therefore, the precedence relationships are:

Cr+ey3tcy = X xg Ca+Ca+Cs=d Xy X, (Set 3)

A simpler set of precedence relationships can be obtained if in the simplification of G(x) we set the nonstate
vectors as don’t care conditions. For the assembly shown in figure 1, the set of precedence relationships

Cp =Xy X €y Xy Xy (Set 4)

was obtained in the same fashion as Set 3, except for setting the nonstate vectors as don’t care conditions in the
simplification of G(x). Set 4 is simpler and yet equivalent to Set 3.

It should be noticed that an unfeasible assembly sequence, such as the assembly sequence whose representation as
an ordered sequence of subsets of connections is ({ ¢y} {cs} {cq,cq,¢4)), does not satisfy both sets of precedence
relationships above (i.e. Sets 3 and 4). It should also be noticed that there are ordered sequences of N—1 subsets of
connections and their corresponding ordered sequence of binary vectors, such as ({ c;} {ey) {es,64.¢41), and

([false, false, false, false, false]
[true, false, false, false, false]
[true, true, false, false, false]
[true, true, true, true, true]),

that do not represent an assembly sequences, but satisfy Sets 3 and 4 of precedence relationships. The precedence
relationships obtained using the result of theorem 2 can only discriminate the feasible from the unfeasible assembly
sequences. The information in the assembly’s graph of connections allows the discrimination of assembly se-
quences from ordered sequences of subsets of connections that do not correspond to assembly sequences.

In order to be able to discriminate the representations of feasible assembly sequences from any sequence of N-1
subsets of connections, the set ¥y must also include all nonstate vectors. For the assembly shown in figure 1 there
are 13 distinct assembly states, two of which do not occur in any feasible assembly sequence. Since there are 32
5-dimensional binary vectors, there are 19 5-dimensional nonstate vectors for the assembly shown in figure 1. Let
G(x) be the logical function that is true if and only if x is one of these 21 (2+19) 5-dimensional vectors.
Simplifying this function, we obtain

G(x) =X Xy XgH Xy Xy Xy H Xy Fy X, + X)Xy X3+ X)Xy Xy +X3oxy Xg+ Xy Xy Xg + X3 X4 Xsg
Therefore, the precedence relationships are:

Cl “)X2'XS C] ‘—)x2'X3 C2 —)xl‘X4 Cz -—)xl-x3

€y =3 X)Xy €3 =¥ X4 Xg Cq = X3 Xg Cg = X3°Xy (Set 5)

The ordered sequences of subsets of connections ({c;} {c,} {c3.¢4,¢51), which does not correspond to an

assembly sequence but satisfies Sets 3 and 4 of precedence relationships does not satisfy Set 5. But it should be
noticed that Set 5 of precedence relationships will be "satisfied" for ordered sequences of subsets of connections
containing less than N-1 subsets. For example, the sequence ({c).c5,c3) { c4,cq}) "satisfies” Set 5 of

precedence relationships. Yet, this sequence does not correspond 1o a feasible assembly sequence because it does
not contain exactly N—1 subsets of connections.

361

5. Conclusion

Two types of precedence relationships that can be used to represent assembly sequences were addressed:
precedence relationships between the establishment of one connection and the establishment of another connection,
and precedence relationships between the establishment of one connection and states of the assembly process.

The problem of guaranteeing the correctness and completeness of precedence relationship representations of
assembly sequences was solved for the class of assemblies that have properties 1 and 2 described in section 3.

In previous work [9] we have described the generation of the correct and complete AND/OR graph representation
of assembly sequences. The correspondence between the AND/OR graph and the directed graph representations has
also been established [10]. The results presented in this paper can be used to generate correct and complete
precedence relationship representations of assembly sequences from the AND/OR graph. These results can also be
used in proving the correctness and completeness of algorithms for the generation of mechanical assembly se-
quences that yield precedence relationship representations.

Acknowledgements

We thank Thomas L. De Fazio for helpful discussions and James Daniell for making the software for simplifica-
tion of boolean functions available to us. The responsibility for the paper, of course, remains with the authors.

This research was supported by the Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico (Brazl), the
Jet Propulsion Laboratory of the California Institute of Technology, and The Robotics Institute of Camnegie Mellon
University.

References

(1] N. Boneschanscher et al. Subassembly Stability. In Proceedings of AAAI-88, pages 780-785. Morgan
Kaufman, August, 1988.

[2] A. Bourjault. Contribution a une Approche Méthodologique de L'Assemblage Automatisé: Elaboration
Automatique des Séquences Opératoires. Thése d’Etat, Université de Franche-Comté, Besangon, France,
November, 1984,

[3] T.L. De Fazio and D. E. Whitney. Simplified Generation of All Mechanical Assembly Sequences. [EEE
Journal of Robotics and Automation RA-3(6):640-658, December, 1987. See corrections on same journal,
RA-4{6):705-708, December, 1988.

[4] H.D.Ebbinghaus et al. Mathematical Logic. Springer Verlag, 1984.

[S] B.R.Fox. A Represemation for Serial Robotic Tasks. PhD thesis, Computer Science, University of Missouri-
Rolla, 1987.

(6] B.R. Fox and K. G. Kempf. Opportunistic Scheduling for Robotics Assembly. In 7985 IEEE International
Conference on Robotics and Automation, pages 830-889. IEEE Computer Society, 1985.

[7] L. S. Homem de Mello. Forthcoming PhD Thesis. Department of Electrical and Computer Engineering,
Camegie Mellon University.

(8] L. S. Homem de Mello and A. C. Sanderson. AND/OR Graph Representation of Assembly Plans. In
Proceedings of AAAI-86, pages 1113-1119. Morgan Kaufmann, 1986.

[9]1 L. S. Homem de Mello and A. C. Sanderson. Automatic Generation of Mechanical Assembly Sequences.
Technical Report CMU-RI-TR-88-19, The Robotics Institute - Camegie Mellon University, December, 1988.

[10] L. S. Homem de Mello and A. C. Sanderson. Task Sequence Planning for Assembly. In IMACS World
Congress '88 on Scientific Computation. Paris, July, 1988.

[11] L. S. Homem de Mello and A. C. Sanderson. Planning Repair Sequences using the AND/OR Graph Represen-
tation of Assembly Plans. In Proceedings of the 1988 IEEE International Conference on Robotics and
Automation, pages 1861-1862. Computer Society Press of the IEEE, April, 1988.

[12JM. M. Lui. Generation and Evaluation of Mechanical Assembly Sequences Using the Liaison-Sequence
Method. Master’s thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, May,
1988. Also published as Report CSDL-T-990, The Charles Stark Draper Laboratorys Inc.

[13) A. C. Sanderson, M. A. Peshkin, and L. S. Homem de Mello. Task Planning for Robotic Manipulation in
Space Applications. IEEE Transactions on Aerospace and Electronic Systems 24(5), September, 1988.

362

